\(\int \frac {1}{(a+b \log (c (d+e x)^n))^2} \, dx\) [97]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 96 \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\frac {e^{-\frac {a}{b n}} (d+e x) \left (c (d+e x)^n\right )^{-1/n} \operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b^2 e n^2}-\frac {d+e x}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )} \]

[Out]

(e*x+d)*Ei((a+b*ln(c*(e*x+d)^n))/b/n)/b^2/e/exp(a/b/n)/n^2/((c*(e*x+d)^n)^(1/n))+(-e*x-d)/b/e/n/(a+b*ln(c*(e*x
+d)^n))

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2436, 2334, 2337, 2209} \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\frac {e^{-\frac {a}{b n}} (d+e x) \left (c (d+e x)^n\right )^{-1/n} \operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b^2 e n^2}-\frac {d+e x}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )} \]

[In]

Int[(a + b*Log[c*(d + e*x)^n])^(-2),x]

[Out]

((d + e*x)*ExpIntegralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)])/(b^2*e*E^(a/(b*n))*n^2*(c*(d + e*x)^n)^n^(-1)) - (
d + e*x)/(b*e*n*(a + b*Log[c*(d + e*x)^n]))

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[x*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2337

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\left (a+b \log \left (c x^n\right )\right )^2} \, dx,x,d+e x\right )}{e} \\ & = -\frac {d+e x}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )}+\frac {\text {Subst}\left (\int \frac {1}{a+b \log \left (c x^n\right )} \, dx,x,d+e x\right )}{b e n} \\ & = -\frac {d+e x}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )}+\frac {\left ((d+e x) \left (c (d+e x)^n\right )^{-1/n}\right ) \text {Subst}\left (\int \frac {e^{\frac {x}{n}}}{a+b x} \, dx,x,\log \left (c (d+e x)^n\right )\right )}{b e n^2} \\ & = \frac {e^{-\frac {a}{b n}} (d+e x) \left (c (d+e x)^n\right )^{-1/n} \text {Ei}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right )}{b^2 e n^2}-\frac {d+e x}{b e n \left (a+b \log \left (c (d+e x)^n\right )\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.28 \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=-\frac {e^{-\frac {a}{b n}} (d+e x) \left (c (d+e x)^n\right )^{-1/n} \left (b e^{\frac {a}{b n}} n \left (c (d+e x)^n\right )^{\frac {1}{n}}-\operatorname {ExpIntegralEi}\left (\frac {a+b \log \left (c (d+e x)^n\right )}{b n}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )\right )}{b^2 e n^2 \left (a+b \log \left (c (d+e x)^n\right )\right )} \]

[In]

Integrate[(a + b*Log[c*(d + e*x)^n])^(-2),x]

[Out]

-(((d + e*x)*(b*E^(a/(b*n))*n*(c*(d + e*x)^n)^n^(-1) - ExpIntegralEi[(a + b*Log[c*(d + e*x)^n])/(b*n)]*(a + b*
Log[c*(d + e*x)^n])))/(b^2*e*E^(a/(b*n))*n^2*(c*(d + e*x)^n)^n^(-1)*(a + b*Log[c*(d + e*x)^n])))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.22 (sec) , antiderivative size = 456, normalized size of antiderivative = 4.75

method result size
risch \(-\frac {2 \left (e x +d \right )}{\left (-i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )+i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b +i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b -i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b +2 b \ln \left (\left (e x +d \right )^{n}\right )+2 b \ln \left (c \right )+2 a \right ) b n e}-\frac {\left (e x +d \right ) c^{-\frac {1}{n}} \left (\left (e x +d \right )^{n}\right )^{-\frac {1}{n}} {\mathrm e}^{-\frac {-i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )+i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b +i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b -i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b +2 a}{2 b n}} \operatorname {Ei}_{1}\left (-\ln \left (e x +d \right )-\frac {-i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )+i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b +i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b -i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b +2 b \ln \left (c \right )+2 b \left (\ln \left (\left (e x +d \right )^{n}\right )-n \ln \left (e x +d \right )\right )+2 a}{2 b n}\right )}{b^{2} n^{2} e}\) \(456\)

[In]

int(1/(a+b*ln(c*(e*x+d)^n))^2,x,method=_RETURNVERBOSE)

[Out]

-2/(-I*b*Pi*csgn(I*c*(e*x+d)^n)*csgn(I*c)*csgn(I*(e*x+d)^n)+I*Pi*csgn(I*c)*csgn(I*c*(e*x+d)^n)^2*b+I*Pi*csgn(I
*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)^2*b-I*Pi*csgn(I*c*(e*x+d)^n)^3*b+2*b*ln((e*x+d)^n)+2*b*ln(c)+2*a)/b/n/e*(e*x+d
)-1/b^2/n^2/e*(e*x+d)*c^(-1/n)*((e*x+d)^n)^(-1/n)*exp(-1/2*(-I*b*Pi*csgn(I*c*(e*x+d)^n)*csgn(I*c)*csgn(I*(e*x+
d)^n)+I*Pi*csgn(I*c)*csgn(I*c*(e*x+d)^n)^2*b+I*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)^2*b-I*Pi*csgn(I*c*(e*x
+d)^n)^3*b+2*a)/b/n)*Ei(1,-ln(e*x+d)-1/2*(-I*b*Pi*csgn(I*c*(e*x+d)^n)*csgn(I*c)*csgn(I*(e*x+d)^n)+I*Pi*csgn(I*
c)*csgn(I*c*(e*x+d)^n)^2*b+I*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)^2*b-I*Pi*csgn(I*c*(e*x+d)^n)^3*b+2*b*ln(
c)+2*b*(ln((e*x+d)^n)-n*ln(e*x+d))+2*a)/b/n)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.22 \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=-\frac {{\left ({\left (b e n x + b d n\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )} - {\left (b n \log \left (e x + d\right ) + b \log \left (c\right ) + a\right )} \operatorname {log\_integral}\left ({\left (e x + d\right )} e^{\left (\frac {b \log \left (c\right ) + a}{b n}\right )}\right )\right )} e^{\left (-\frac {b \log \left (c\right ) + a}{b n}\right )}}{b^{3} e n^{3} \log \left (e x + d\right ) + b^{3} e n^{2} \log \left (c\right ) + a b^{2} e n^{2}} \]

[In]

integrate(1/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="fricas")

[Out]

-((b*e*n*x + b*d*n)*e^((b*log(c) + a)/(b*n)) - (b*n*log(e*x + d) + b*log(c) + a)*log_integral((e*x + d)*e^((b*
log(c) + a)/(b*n))))*e^(-(b*log(c) + a)/(b*n))/(b^3*e*n^3*log(e*x + d) + b^3*e*n^2*log(c) + a*b^2*e*n^2)

Sympy [F]

\[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int \frac {1}{\left (a + b \log {\left (c \left (d + e x\right )^{n} \right )}\right )^{2}}\, dx \]

[In]

integrate(1/(a+b*ln(c*(e*x+d)**n))**2,x)

[Out]

Integral((a + b*log(c*(d + e*x)**n))**(-2), x)

Maxima [F]

\[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int { \frac {1}{{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="maxima")

[Out]

-(e*x + d)/(b^2*e*n*log((e*x + d)^n) + b^2*e*n*log(c) + a*b*e*n) + integrate(1/(b^2*n*log((e*x + d)^n) + b^2*n
*log(c) + a*b*n), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 286 vs. \(2 (95) = 190\).

Time = 0.32 (sec) , antiderivative size = 286, normalized size of antiderivative = 2.98 \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\frac {b n {\rm Ei}\left (\frac {\log \left (c\right )}{n} + \frac {a}{b n} + \log \left (e x + d\right )\right ) e^{\left (-\frac {a}{b n}\right )} \log \left (e x + d\right )}{{\left (b^{3} e n^{3} \log \left (e x + d\right ) + b^{3} e n^{2} \log \left (c\right ) + a b^{2} e n^{2}\right )} c^{\left (\frac {1}{n}\right )}} - \frac {{\left (e x + d\right )} b n}{b^{3} e n^{3} \log \left (e x + d\right ) + b^{3} e n^{2} \log \left (c\right ) + a b^{2} e n^{2}} + \frac {b {\rm Ei}\left (\frac {\log \left (c\right )}{n} + \frac {a}{b n} + \log \left (e x + d\right )\right ) e^{\left (-\frac {a}{b n}\right )} \log \left (c\right )}{{\left (b^{3} e n^{3} \log \left (e x + d\right ) + b^{3} e n^{2} \log \left (c\right ) + a b^{2} e n^{2}\right )} c^{\left (\frac {1}{n}\right )}} + \frac {a {\rm Ei}\left (\frac {\log \left (c\right )}{n} + \frac {a}{b n} + \log \left (e x + d\right )\right ) e^{\left (-\frac {a}{b n}\right )}}{{\left (b^{3} e n^{3} \log \left (e x + d\right ) + b^{3} e n^{2} \log \left (c\right ) + a b^{2} e n^{2}\right )} c^{\left (\frac {1}{n}\right )}} \]

[In]

integrate(1/(a+b*log(c*(e*x+d)^n))^2,x, algorithm="giac")

[Out]

b*n*Ei(log(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))*log(e*x + d)/((b^3*e*n^3*log(e*x + d) + b^3*e*n^2*log(c
) + a*b^2*e*n^2)*c^(1/n)) - (e*x + d)*b*n/(b^3*e*n^3*log(e*x + d) + b^3*e*n^2*log(c) + a*b^2*e*n^2) + b*Ei(log
(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))*log(c)/((b^3*e*n^3*log(e*x + d) + b^3*e*n^2*log(c) + a*b^2*e*n^2)
*c^(1/n)) + a*Ei(log(c)/n + a/(b*n) + log(e*x + d))*e^(-a/(b*n))/((b^3*e*n^3*log(e*x + d) + b^3*e*n^2*log(c) +
 a*b^2*e*n^2)*c^(1/n))

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b \log \left (c (d+e x)^n\right )\right )^2} \, dx=\int \frac {1}{{\left (a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )\right )}^2} \,d x \]

[In]

int(1/(a + b*log(c*(d + e*x)^n))^2,x)

[Out]

int(1/(a + b*log(c*(d + e*x)^n))^2, x)